If it's not what You are looking for type in the equation solver your own equation and let us solve it.
255.96x^2+68.4x-521.391=0
a = 255.96; b = 68.4; c = -521.391;
Δ = b2-4ac
Δ = 68.42-4·255.96·(-521.391)
Δ = 538499.52144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(68.4)-\sqrt{538499.52144}}{2*255.96}=\frac{-68.4-\sqrt{538499.52144}}{511.92} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(68.4)+\sqrt{538499.52144}}{2*255.96}=\frac{-68.4+\sqrt{538499.52144}}{511.92} $
| x–7=1 | | (5x+18)=(12x+9) | | x=-1-(1/4-x) | | c*2=22 | | 0.25x-6=4 | | 6t=33. | | 8x+14+2x+38=3x+24 | | 54=2w-6 | | 54=6-2w | | 6.55x+81=42.9025+9x | | 20+.15x=84.20 | | 8x-17=-20 | | 20x+.15=84.20 | | 0.8(10x+15)=3.1(0.2x+5) | | 5x-12x-4x^2=0 | | 10/6-(5x-2)=1/5x-12 | | 36.6=6.1c | | 11m-16=12m+14 | | x/√(16+x^2)+(x-10)/√(36+(10-x)^2)=0 | | -5(a+3)=8 | | x/√(16+x^2)=0 | | 52x^2-320x+1600=0 | | 2000/x=800 | | 4x^2-7x-360=0 | | x-1/2x-3=9 | | x2−45= 44 | | x-46000/x=0.18 | | 3^2x-1=12 | | x-1/2x-3=0 | | x/5=-8/29 | | Y=3x2-6x+2 | | 7(12-y)=(y+3) |